THERMOELASTIC STRESSES IN A LONG HOLLOW CYLINDER
UNDER LOCAL HEATING OF THE SIDE SURFACE
ACCORDING TO A NEWTON LAW

P. Z. Livshits UDC 539.30:536.248
The three-dimensional thermoelasticity problem for a hollow isotropic eylinder is con-
sidered, The solution is obtained in a form effective for computations for a given discon-

tinuous temperature field.

Let us consider the case of heating of a cylinder by the surrounding medium (T, > T) when the heat
exchange conditions on the outer (r = @) and inner (r = b) surfaces have the form

rea oT R (T—Ty) =0, Taz{Tncosmp, |z} <<e,

ar 0, [z{>¢,
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In the dimensionless coordinates p and ¢ the solution of the stationary heat conduction problem satisfy-
ing the boundary conditions (1) can be written as a Fourier integral
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and the stresses ¢(T) caused by the temperature field (2) can be represented thus [1]:
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In solving the elasticity theory problem, we select the harmonic functions X(p, ¢, ¢) in terms of which
the stresses ¢(Y) are expressed in conformity with Hooke's law, in the form
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where the constants Ay(v), . . ., Ag(¥) are to be determined from the conditions of no total (O'(T) + o(Y))

stresses 0p, Tpz, Tpp O1 the side surfaces (p =1+ A and p = 1-2) of the cylinder. Compliance with these
conditions according to (4) and (2), results at once, in a system of linear equations whose expanded matrix

is (® = @p = [aTETR])
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The elements am,k of the three columns not written down in (6) (k = 4, 5, 6) agree with the elements am, k-3
if the modified Bessel functions I in these latter are replaced by functions K of the same arguments.

Taking account of (4), (2), (5) and introducing the notation
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we obtain a solution of the thermoelasticity problem in the form of the following integrals (N=1 and N = 4):
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The functions F(Nm) (m =1, 2, 4, 5) in (8) have the following form for N =1, say
" [ §
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where Ay (¥), . . . » Amg(Y) are the algebraic cofactors of the elements of the m-th row of the system deter-

minant (see [6]). The value of this determinant multiplied by {(=7?) is denoted by A(y) = An(A, v ).in (11).

Integrals such as (10) are evaluated on the basis of the Cauchy theorem by summing the residues (res)
of the integrands over all poles ¥ g in the upper half-plane of v:

resF, (o, }, v) = vlinv1 (Y~ v Fylos A V), 12)

where ¥ g =Y g = =i g are the roots of the equation An(A,7) =0 (3); Yg =Yns = +ikg, ¥g =¥ns = £ Ng
+ if8g are the roots of the equation ™ An(x,v) = 0 [see (6)].

The expressions (10) for the stresses can now be represented as:

0, = 0p + OQ] cosnp, o,= oY + Q] cosng, T4 = OQ sinng,
0 T : T 0 T {13)
Gp= 0+ O cosng, Ty, =08 cosng, T, = Tpp + 0% sin ng,

where the main components, being values of the residues at the pole Y= 0 (and corresponding to the solution
which is obtained in the temperature distribution (2) as v— 0) equal zero in the case n = 2 (but Uoz = 0),

and are the following forn=0andn=1 (¢% = ,?J + a(p)

* In case n = 0 the torsion problem (with its characteristic roots pyg) is completely divorced from that under
consideration, Hence, here and henceforth, we understand v 'Z)Ao(’}’ ) to be a fourth order determinant
which can be obtained by eliding the rows m = 3, 6 and the columns k = 3, 6 from the expanded matrix (6).
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The component Qg(p, A, &), reflecting the local nature of the heating (1), in (13) is the following
(¢=0)forN=1,2,3,6:
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where g is a factor taking on the following values
e=1 foo E<<l, e6=0 for E=1I e=—1 for E>L (22)

The expressions for the residues in (21) are the following by virtue of (12), (7)-(9) and (3), for N =1, say:
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On the basis of (12), (11), and (8), the notation Ug)(l?,?\ yipg) = opl, A, ipg), of})(p, Asvg) = 0,00, »Yg)s
., as well as

(24)
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which takes account of the linear dependence of the cofactors of the elements of rows in the system deter-
minant 7Y 2)A(A, v) for values y=ipgand y =yg= ng *ibg of its roots

M=___=Am6(x77)= Y —
A, ) Ay (h 7) Frn:i s W) =fna (26)

is used in (24).
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Here ¢ =-1 in (21) for N = 4, 5, and quantities similar to (23) and (24) are subject to replacement hy
corresponding quantities multiplied by (~i) (see [1]).

It is seen from the structure of the solution (13) that members of the form (21) decrease as 1 grows,
and therefore, the distortion in the stress state caused by local heating (1) diminishes and vanishes as 1
— «, The main members in (13) (see o and (14)-(16) for £ < 1), which describe the unperturbed stress
state (when the medium temperature T,is constant along the axis over the whole length of the generatrix),
are the solution of the appropriate plane problem of thermoelasticity [2] for a hollow cylinder not elamped
at the endfaces* (the axial force and bending moment in any cross-section ¢ of the cylinder equals zerot).

Let us note that if the medium temperature at the inner surface of the cylinder is kept constant in both
the axial and circumferential directions (i.e., Tp = const # 0) in (1)), then it is necessary to replace T, by
the difference T;—Tp in @, of the expressions 02,, a‘zp, c;‘)z 14).

If the discontinuous temperature field in the cylinder originates because of uniform heating of a por-
tion of its inner (r = b) side surface (i.e., Tp is discontinuous in (1), T, = T(a, ¢, z) = 0), thento find the
main terms of the solution of this problem it is sufficient to replace a by b and b by a, —Bi}, by Bi, in the
right sides of (15)-(17), as well as to reverse the sign in front of the right sides in (14)~(17). The expres-
sions for the residues [res FN] in the additional terms in (21) are now to be subject to replacement by the
expressions [res F[j], where (see (23)-(25)).
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Let us examine the axisymmetric heating case (n = 0), which is most important for applications, in
greater detail.

The values of the roots of the known [3] characteristic equation (3), needed for numerical computa-
tions by means of (13) (for different values of the Biot criteria) are contained in tables [4~6].

The roots of the equation —Y 'QAO(?»,“/ ) [7], which are in expanded form

— M (V) = TEE {la? 4+ 2 (1 — )] (B -+ 2(1 — V)] Ly,

— B o+ 2(1 =)L —o® (B + 2 (1~ )] Ly +a¥fl? af B 4 (1 =)} =0, (30)

are found by solving the appropriate elastic problem of a hollow cylinder and are presented in Table 1 (v
= 0.25).

The exact equation (30) can be replaced by an asymptotic equation for | 8| = 10 on the basis of asymp-
fotic representations of the Begsel functions:

—V"ZAO(\’)z%ﬂ{(a—ﬁ)z——é—chﬂahﬁ)— «—p

[(l~v)—%]sh2(a—ﬁ)
——55[2(1%)(%&)2—@]}% (31)

and its approximate solution is (for s = 2):

Ay, %é-(lnts—{— i

;“ )—63, t, = 2ns — m,
* Pure bending stresses, due to the moment, are excluded from consideration starting with (5) (for n = 1),
t The conditions that the axial force and bending moment be zero are satisfied not only for the main terms
oY but also for the whole expression (13) for o,.
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TABLE 1. Values of the Roots of the Transcendental Equation
(30) of the Axisymmetric Problem of an Elagtic Hollow Cylinder

Ay = Ay +- 008y

Mz = M2 + A0

Aps = Ans + iA0;

% A

0,1 9/11
0,2 2/3
0,3 7/13
0,4 37
0,5 1/3
0,6 1/4
0,7 317
0,8 1/9
0,9 1/19

0,63534-1,1787
0,6040-+i0,9976
0,5681 4-i0,8420
0,5254--i0,7124
0,47714-i0,6014
0,4236--i0,5026
0,3638--i0,4100
0,2943-1-i0,3175
0,2065-i0,2139

1,02614i2,7198
1,0798-142,3793
1,1122-1i2,2541
1,1213-142,1873
1,1224142,1503
1,12341i2,1276
1,1242-+2,1162
1,12484-i2,1100
1,1252-442,1070

1,28004-44,1154
1,3691-4-i3,9072
1,3809-143,8276
1,38334-i3,7912
1,3812-1-i3,7692
1,3828-1-i3,7600
1,3838-1-i3,7542
1,3840 43,7508
1,38424-i3,7492

TABLE 2. Change in the Quantity 0 |z=] Uep on the Side Sur-
faces (r = @ and r = b) of Hollow Cylinders of Different Thickness
as the Length (2¢) of the Axisymmetrically Heated Portion of the
Outer Surface (r = @) Increases (for Ty = 0)

c/d
b o1 ] oz | o5 | w0 ] s
0.2 r—a 1,971 1,306 1,028 0,909 0,960
] re=b 0,180 0,519 0,768 1,025 1,037
04 r=a 1,524 1,064 0,901 0,897 0,968
’ =b 0,211 0,573 0,831 1,271 1,040
0.6 =g 1,253 0,909 0,872 0,974 1,001
’ =b 0,348 0,806 0,998 1,033 1,003
08 =a 1,163 0,851 0,826 0,972 1,006
J b 0,331 0,817 0,969 1,046 1,001
1 A2 (7T —8v 1 I A2(T — 8v
18, = — | In®4 + -—(————)(lnts——l)—i—— +1 lnts———(—————) . (32)
t, 1— a2 2 L 2(1—23)

1t is not without interest to note that by keeping the main terms in the first two members of (31), we obtain
the equations
4)2
— 1 =~ 1 1— =0,
= =5 ) )

which are identical to the well-known equations characteristic of problems on compression and bending of
an elastic layer of thickness 2 A [8]

432
1 — 32

e
4hy

ez
4hy

_ 2chdhy
(4hy)?

(33)

sh 20y sh2hy
| + — =0, ——1 =0,
T o 2y (34)
if exp (—4Ay) in the last members are neglected in comparison with unity:
A %
1+ e =05 "—62'? =0. (35)
40y 4y

There results from (33), (35), and (32) that the magnitude of the product 2Ayg is almost independent of A
and for s = 2, 4, . . . agrees with the roots of the equation for a compressed, and for s=3,5,...o0fa
cambered layer, where 2 Ay is practically a constant (for fixed s) for b/a = 0.4and$S = 2 (see Table 1).

To illustrate the order of the computation, let us find values of the quantities o, and gy on the side
surfaces r = ¢ and r = b in the z = 0 section of a cylinder having zero temperature on the inner surface and
being heated on a portion of the outer surface of length 2¢c = 0.54, say, if b = 0.4a and Bi, = Bip = =,

Using the data of Table 1 and [6],* as well as values of functions of the type (23), (24) which we have
tabulated, we obtain by means of (13), (14), (18), (19), (21), (22) for p=1 2 (to verify the rapid conver-
gence of the series, the summed terms s =1, 2, 3 are shown)

* The asymptotic representation of the roots of (3), which here degenerates into Ay (A,Y) =1Ly =0, is the
AZ 1

following: Axs = -Tg;s—[l Taa—m ;“zsa’]'
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©ds _ | _ 4993 41— 0.014 +2(—0.010)] - [— 0.001 -+ 2.0.001] + 0} — 1,139, (36)

(00)a
(%73% = 1+ 2.326 {[— 0.058 -+ 2 (—0.138)] + [—0.004 -+2:0.002] 4 [0.001 — O} = 0.495, 37)
(0)0 = —0.005(0D  (6), = 0.214 (@D, (8)
where
(9)0 = (030 = — (1_‘1 9 [ ,ﬁzbz B mi‘L ] ‘
b (39)
b = o = 52 [ S ] '
b

Starting from the Hooke's law relationships with temperature terms
Eu=r{log—v (o, +0,)] +a,ET}

we defermine the radial displacements of the side surfaces (on which ¢ p= 0) in the same z = 0 section, in
passing:

(W= 0715 (), (1), = 0.580 (u2),

wherein

8, "o|z—r a4 I—v|o—pm

Eu® . 202 1 _l+v a? ( bz) b
In

Presented in Table 2 are results of calculating the values of the ratios of the circumferential stresses
(see (38)~(37)), found for cylinders of different thickness for a different relative length of the heated portion
of the outer surface (lim Tp= a%,). These results afford the possibility of quantitative estimation of the

distortion induced by local heating in the values of the stresses ¢, (39) which are constant over the whole
generator length under uniform axisymmetric heating of the outer side surface of the cylinder,

It is easy to go from the solution (13) over to the solution for the case of concentrated heating (in the
section £ = 0) on a circle of radius p =1 +2:

BmQT, =T.,R* (@20, T,— ), (40)
where T;'; is the temperature per unit length of the outer circumference of the cylinder.

The passage to the limit in (21) (for ¢ > 1) results in the following expressions for the functions w%}(p,
A,£)forN=1,2,3,6:

of (0, b &) = Y {l—x1esF, (o, & in)lexp (—x)

s==1
+[—u,tes Fy (o, A, in)lexp (—p,E) + 2 Reliv,resFyy (o, A, 7o)l exp (iv,8)}, (41)
and in an analegous form for N = 4, 5,

The expressions for the stresses for the case of concentrated (40) heating (1) can now be represented
thus for example (@* = @5 = [aTETs 1)

Ro , Ro, ‘

—@;"— = of cosny, @: = o] cos ng,
The results obtained above can easily be extended, on the basis of the superposition principle, to the

case of heating a portion of the outer side surface of a cylinder according to any law Tg = T(a, ¢, 2).

RT(Pz

= o] sin ng. (42)

Taking account of all that has gone before (see (27)-(29)), the passage to the solution for the case of
arbitrary heating on the inner surface Ty, = T(b, @, 2z) is also quite simple.
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T =T(r, ¢, z)

a

b

R=(a +h)/2

A = {a—b)/2R

{=c¢/R
p=r/Rl-A=p=1+2A);
¢=z/R

a=va/R=7Y1+A);
B=7b/R=7(1-2)

ha, hb

Big = ahg;

Bip, = bhy,

aT

E

14

[+] =1 + (a/Bia)(8/ 0 )],
-1 = [1—(B/Bipi3/ 8p)]
L =L(x,y) =Lp(x, y)

= In(x)Kn ()~ I (1)Kp (x)

Vix) = (L-2Y)I{x) + '(x);

NOTATION

is the temperature at a point of an elastic cylinder;
is the outer radius;

is the immer radius;

is the mean radius of the cylinder;

is half the relative thickness of the cylinder wall;
is half the relative length of the heated section;

are the dimensionless coordinates;

are the values of the quantity Yp forp=1 2 A;
are the relative heat transfer coefficients;

are the Biot criteria;

is the coefficient of linear thermal expansion;
is the elastic modulus;

is the Poisson ratio;

are the operators;
are the combinations of modified Begsel functions of the first In(x) =I(x) and

third Kp(x) =K (x) kinds of order n, where {L;{(x, y)}y=X =1/x (the prime
denotes differentiation with respect to the argument);

WI(x) = VI(x) + I'(x) —0?I(x) /2% .

-

.
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